Mango (Mangifera indica L.) as a model for flavonoid studies
Main Article Content
Abstract
Nowadays, more and more people are turning to healthy eating, along with it, the consumption of active ingredients that have served as therapeutics in well-known traditional medicine. The objective of the work is a part of the abundant information that exists on the use of mango (Mangifera indica L.) to know its potential, understand where the research in recent years related to the use of secondary metabolisms of that mango is directed. This fruity, which could well be considered a model for all the benefits it offers. A search has been carried out using the PRISMA methodology to always use the same criteria in the SCOPUS, SciELO, REDALYC database and Google Academic as a search engine. In recent years, extraction methods have been improved and with it applications and studies with a scientific nature, which help explain its use in traditional medicine and project its future, although it is important to emphasize that there is still much to study and elucidate. Being faced with very large groups of phytochemicals with very specific actions, where bioavailability is low and must be taken into account when it comes to experiments and in vivo treatments.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Amrita, B., Liakot, A., Masfida, A., y Begum, R. (2009). Studies on theantidiabetic effects of Mangifera indica stem-barks andleaves on nondiabetic, type 1 and type 2 diabetic modelrats. Bangladesh Journal of Pharmacology. 4(2),110-114. https://doi.org/10.3329/bjp.v4i2.2488
Bekoe, E., Kretchy, I., Sarkodie, J., Okraku, A., Sasu, C., Adjei, D., y Twumasi, M. (2017). Ethnomedicinal survey of plants used for the management of hypertension sold in the makola market, Accra, Ghana. European Journal of Medicinal Plants. 19(3) 1–9, https://doi.org/10.9734/EJMP/2017/32342.
Bompard, J. (1993). The genus Mangifera rediscovered: The potential contribution of wild species to mango cultivation. Acta Horticulturae, Leuven, Belgium 341:69-71. https://doi.org/10.17660/ActaHortic.1993.341.5
Bordenave, N., Hamaker, B., y Ferruzzi, M (2014). Naturaleza y consecuencias de las interacciones no covalentes entre flavonoides y macronutrientes en los alimentos. Food Funct. 5(1):18-34.
Camacho-Campos, C., Pérez-Hernández, Y., Valdivia-Ávila, A., Rubio-Fontanills, Y., y Fuentes-Alfonso, L. (2020). Evaluación fitoquímica, antibacteriana y molusquicida de extractos de hojas de Agave spp. Revista Cubana de Química. 32(3) http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212020000300390&lng=es&tlng=es.
Carrasco, J. C. (2022). Producción nacional de mango alcanzó las 474.000 toneladas en 2022. Agencia Agraria de Noticias. https://agraria.pe/noticias/produccion-nacional-de-mango-alcanzo-las-474-000-toneladas-e-30987
Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J., y Rakariyatham, N. (2007). Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chemistry. 100(3) 1044-1048. https://doi.org/10.1016/j.foodchem.2005.11.008
Day, A., y Williamson, G. (2001). Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. British Journal of Nutrition. 86(S1): S105-S10.
Díaz-Gómez, R., López-Solís, R., Obreque-Slier, E., y Toledo-Araya, H. (2013). Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT-Food Science and Technology. 54(2) 331-335. https://doi.org/10.1016/j.lwt.2013.07.012
Ediriweera, M., Tennekoon, K., y Samarakoon, S. (2017). A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango). Evidence-based complementary and alternative medicine: eCAM, 6949835. https://doi.org/10.1155/2017/6949835
FAO Statistics (FAOSTAT). (2023). Principales Frutas Tropicales Análisis del mercado Resultados preliminares. https://www.fao.org/3/cc9308es/cc9308es.pdf
Garrido, G., Delgado, R, Lemus, Y., García, D., Beltrán, A., Rodríguez, Janeth; Quintero, G., Delporte, C., Morales, M., Payá, M., Muñoz, E., Guevara, M., Alvarez, A., Boza, A., y Arús, L. (2004) Extracto natural de mangifera indica l. (vimang®): de la etnomedicina a la clínica. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 3(6) 107-109 https://www.redalyc.org/pdf/856/85630605.pdf
Gbeassor, M., Agbonon, A., y Aklikokou, K. (2005). Mangifera indicaStem Bark effect on the rat trachea contracted byacetylcholine and histamine. Pharmaceutical Biology 43: 475-479. https://doi.org/10.1080/13880200590963943
Gonzales, G. B., Smagghe, G., Grootaert, C., Zotti, M., Raes, K., y Van Camp, J. (2015). Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug metabolism reviews. 47(2), 175–190.
https://doi.org/10.3109/03602532.2014.1003649
Gutiérrez-Grijalva, P., Ambriz-Pére, D., Leyva-López, N., Castillo-López, R., y Heredia, J. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutrición. 66(2): 87-100. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222016000200001
Hernández, K., Morales, N., y Ordoñez, R. (2021). Relación entre consumo de compuestos bioactivos de frutas y riesgo de enfermedades cardiovasculares en un conjunto residencial de Quito-Ecuador. Qualitas. 21. http://www.nutricionhospitalaria.com/pdf/3338.pdf
Jahurul, A., Zaidul, M., Ghafoor, K., Al-Juhaimi, Y., Nyam, L., Norulaini, N., Sahena, F., y Mohd, O. (2015). Mango (Mangifera indica L.) by-products and their 53 valuable components: A review. Food Chemistry, 183. 173-180. https://doi.org/10.1016/J.FOODCHEM.2015.03.046
Kim, H., Kim, H., Mosaddik, A., Gyawali, R., Ahn, K., y Cho, S. (2012). Induction of apoptosis by ethanolic extract of mangopeel and comparative analysis of the chemical constitutesof mango peel and flesh. Food Chemistry. 133:416-422. https://doi.org/10.1016/j.foodchem.2012.01.053
Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R., y Mekhemar, M. (2021). Mango (Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Antioxidants. 10(2), 299.
https://doi.org/10.3390/antiox10020299
Loan, N., Long, D., Yen, P., Hanh, T., Pham, T., y Pham, D. (2021). Proceso de purificación de mangiferina de hojas de Mangifera indica L. y evaluación de sus bioactividades. Procesos. 9(5):852. https://doi.org/10.3390/pr9050852
Lorenz, M., Jochmann, N. von Krosigk, A., Martus P., Baumann, G. Stangl, K., y Stangl, V. (2007). Addition of milk prevents vascular protective effects of tea, European Heart Journal. 8 (2) 219–223. https://doi.org/10.1093/eurheartj/ehl442
Luo, F., Fu, Y., Xiang, Y., Yan, S., Hu, G., Huang, X., Huang, G., Sun, C., Li, X., y Chen, K. (2014). Identification and quantification of gallotannins in mango (Mangifera indica L.) kernel and peel and their antiproliferative activities. Journal of Functional Foods. 8, 282-291. https://doi.org/10.1016/j.jff.2014.03.030
Luo, F., Lv, Q., Zhao, Y., Hu, G., Huang, G., Zhang, J., Sun, C., Li, X., y Chen, K. (2012). Quantification and purification of mangiferin from Chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2- induced stress. International Journal of Molecular Sciences. 13(9), 11260–11274. https://doi.org/10.3390/ijms130911260
Maazoun, A.M., Hamdi, S. H., Belhadj, F., Jemâa, J. M., Messaoud, C., y Marzouki, M. N. (2019). Phytochemical Profile and Insecticidal Activity of Agave americana Leaf Extract towards Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Environmental Science and Pollution Research International. 26, 19468–19480. https://doi.org/10.1007/s11356-019-05316-6
Martínez-Flórez, S., González-Gallego, J., Culebras, J., y Tuñón, M. (2002). Flavonoids: properties and antioxidizing action. Nutrición Hospitalaria. 17(6): 271-278 http://www.nutricionhospitalaria.com/pdf/3338.pdf
Masud, G. (2016). Pharmacological Activities of Mango (Mangifera Indica): A Review. Journal Pharmacognosy Phytochemestry. 5(3): 1-7. https://www.phytojournal.com/archives/2016/vol5issue3/PartA/5-2-21-518.pdf
Midagri (2023). Perfil productivo y competitivo de los principales cultivos del sector. https://app.powerbi.com/view=eyJrIjoiNzEzNTU2MmUtY2EzZC00YjQ2LTg5YzUtYzJjODRhZjg5NGY5IiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9
Mierziak, J., Kostyn, K., y Kulma, A. (2014) Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules. 19(10):16240-16265. https://doi.org/10.3390/molecules191016240
Mirza, B., Croley, R., Ahmad, M., Pumarol, J., Das, N., Sethi, G., y Bishayee, A. (2021). Mango (Mangifera indica L.): a magnificent plant with cancer preventive and anticancer therapeutic potential. Critical Reviews in Food Science and Nutrition. 61(13), 2125–2151. https://doi.org/10.1080/10408398.2020.1771678
Mukherjee, S. (1985). Systematic and ecogeographic studies of crop genepools: I. Mangifera. International Board for Plant Genetic Resources Secretariat. https://books.google.com.pe/books/about/Systematic_and_Ecogeographic_Studies_of.html?id=RZ4bygEACAAJ&redir_esc=y
Nithitanakool, S., Pithayanukul, P., Bavovada, R., y Saparpakorn, P. (2009). Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules, 14(1), 257-265. https://doi.org/10.3390/molecules14010257
Noratto, G., Bertoldi, M., Krenek, K., Talcott, S., Stringheta, P., y Mertens-Talcott, S. (2010). Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. Journal of Agricultural and Food Chemistry. 58(7):4104-4112. https://doi.org/10.1021/jf903161g
Pereira, V., Figueira, O., y Castilho, P. (2024). Flavonoides como insecticidas en la protección de cultivos: una revisión de la investigación actual y perspectivas futuras. Plants. 13(6):776. https://doi.org/10.3390/plants13060776
Pérez, G. (2003). Los flavonoides: antioxidantes o prooxidantes. Revista Cubana de Investigaciones Biomédicas. 22(1) http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002003000100007&lng=es&tlng=es.
Punia, A., y Chauhan, N. (2022). Effect of daidzein on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 262, 109465. https://doi.org/10.1016/j.cbpc.2022.109465
Puri, S., Singh, S., y Sohal, S. (2022). Inhibitory effect of chrysin on growth, development and oviposition behaviour of melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Phytoparasitica. 50, 151–162. https://doi.org/10.1007/s12600-021-00940-w
Sivankalyani, V., Feygenberg, O., Diskin, S., Wright, B., y Alkan, N. (2016). Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biology and Technology. 111, 132-139. https://doi.org/10.1016/j.postharvbio.2015.08.001.
Stec, K., Kordan, B., y Gabryś, B. (2019). Effect of soy leaf flavonoids on pea aphid probing behavior. Insects. 12 (8), 756. https://doi.org/10.3390/insects12080756
Tirado-Kulieva, V., Atoche-Dioses, S., y Hernández-Martínez, E. (2021). Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Scientia Agropecuaria. 12(2). 283-293. https://doi.org/10.17268/sci.agropecu.2021.031
Xiao, J., Mao, F., Yang, F., Zhao, Y., Zhang, C., y Yamamoto, K. (2011). Interaction of dietary polyphenols with bovine milk proteins: Molecular structure–affinity relationship and influencing bioactivity aspects. Molecular Nutrition Food Research. 55(11):1637-1645. https://doi.org/10.1002/mnfr.201100280
Zhang, H., Yu, D., Sun, J., Liu, X., Jiang, L., Guo, H., y Ren, F. (2014). Interaction of plant phenols with food macronutrients: characterisation and nutritional–physiological consequences. Nutrition Research Reviews. 27(1). 1–15. https://doi.org/10.1017/S095442241300019X
Zhao, C., Ma, C., Luo, J., Niu, L.,Hua, H., Zhang, S., y Cui, J. (2021). Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. Insects. Reseñas de investigaciones médicas. 12(1). 32. https://doi.org/10.3390/insects12010032