Evaluación de los efectos de la congelación criogénica en frutas
Contenido principal del artículo
Resumen
La congelación criogénica se presenta como una de las técnicas más eficientes para la conservación de frutas, ya que permite prolongar su vida útil preservando así sus características sensoriales y nutricionales. Su efectividad radica en la formación de cristales de hielo pequeños y uniformes que mantienen la estructura celular, reduciendo daños físicos, limitando la actividad microbiana y enzimática. Su éxito depende de factores como la velocidad de congelación, el tipo de fruta, tiempo de almacenamiento y el proceso de descongelación. En el mango, los métodos de congelación rápida como el Individual Quick Freezing (IQF) han demostrado conservar mejor la textura, color y antioxidantes en comparación con técnicas convencionales, mientras que en los arándanos la aplicación de nitrógeno líquido permite mantener altos niveles de vitamina C y firmeza, aunque puede provocar fracturas superficiales si no se controla el proceso. En kiwis, los efectos varían de acuerdo con el contenido de sólidos solubles y la zona del fruto, influyendo en la resistencia al frío y el nivel de daño estructural; por su parte, en el durián la criogenia ha demostrado ser más eficaz que la congelación tradicional, preservando por mayor tiempo la calidad interna y externa del fruto. Tecnologías emergentes como el ultrasonido, la alta presión, los campos magnéticos y el uso de crioprotectores, especialmente nanopartículas de polisacáridos, potencian esta técnica al reducir la recristalización y optimizar la estabilidad de las frutas durante la congelación y descongelación, lo que convierte a la criogenización en una herramienta estratégica para la industria alimentaria moderna.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
Alhamdan, A., Hassan, B., Alkahtani, H., Abdelkarim, D., y Younis, M. (2018). Freezing of fresh Barhi dates for quality preservation during frozen storage. Saudi Journal of Biological Sciences, 25(8), 1552–1561. http://dx.doi.org/10.1016/j.sjbs.2016.02.003
Aldoradin-Puza, E., Cuba-Mayo, F., Alemán-Polo, J., Perea-De la Matta, A., Sánchez-Espinoza, J., y Castillo-Alva, J. (2019). Efecto de la congelación con campos magnéticos oscilantes sobre las características físicas y sensoriales del mango (Mangifera indica L. cv. ‘Kent’). Revista Brasileña de Tecnología de Alimentos, 22, e2018169. https://doi.org/10.1590/1981-6723.16918
Cheng, L., Wu, W., An, K., Xu, Y., Yu, Y., Wen, J., Wu, J., Zou, Y., Liu, H., Zhu, J., y Xiao, G. (2020). Advantages of liquid nitrogen quick freezing combine gradient slow thawing for quality preserving of blueberry. Crystals, 10(5), 368. https://doi.org/10.3390/cryst10050368
Charoenrein, S., y Owcharoen, K. (2016). Effect of freezing rates and freeze-thaw cycles on the texture, microstructure and pectic substances of mango. International Food Research Journal, 23(2), 613–620. http://www.ifrj.upm.edu.my
Demirci, K., Bayraktar, B., Özdemir , E.,
Görgüç, A., y Yilmaz, F. (2025). The potential of nanoscale polysaccharides for cryoprotection in frozen foods. Trends in Food Science & Technology, in press. https://doi.org/10.1016/j.fbio.2025.106381
Domin, M., Dziki, D., Kłapsia, S., Blicharz-Kania, A., Biernacka, B., y Krzykowski, A. (2020). Influence of the Freeze-drying Conditions on the Physicochemical Properties and Grinding Characteristics of Kiwi. International Journal of Food Engineering, 16(1-2), 20180315. https://doi.org/10.1515/ijfe-2018-0315 http://dx.doi.org/10.1515/ijfe-2018-0315
Grover, Y., y Negi P. (2023). Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. Journal of Food Science, 88(1), 4799–4826. https://doi.org/10.1111/1750-3841.16810
Hendra Adi Prasetia, Slamet Budiawan, Ade Syahputra, Retno Umiarsih, Rifena Pangastuweni, Mutia Riefka Fauzidanty, Idham Sakti Harahap, Dondy Anggono Setyabudi, Affandi, Mazdani Ulfah Daulay and Wawan Sutian (2023). Effects of freezing time on degradation of durian (Durio zibethinus Murr.) fruit’s attributes during the frozen storage. Tropical Life Sciences Research 34(1): 19–39. https://doi.org/10.21315/tlsr2023.34.1.2
Huang, B., Li, Y., y Hu, Z. (2024). Effect of Glassy State and Liquid Nitrogen Quick Freezing on the Quality Characteristics of Blueberries. Food Science, 45(6), 225–232. https://www.spkx.net.cn/EN/10.7506/spkx1002-6630-20230629-236
Huang, W., Shen, S., Wang, Z., Yang, J., Lv, H., Tian, H., Burdon, J., y Zhong, C. (2024). Freezing points of fruit from different kiwifruit genotypes at harvest and during cold storage. Horticulturae, 10(6), 624. https://doi.org/10.3390/horticulturae10060624
Gales, O., Jones, J., y Swarts, N. (2022). An analysis on the impacts of cryogenic freezing on raspberry quality. Advances in Horticultural Science, 36(4), 293–301. https://doi.org/10.36253/ahsc-13824
Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International (Ottawa, Ont.), 121, 479–496. https://doi.org/10.1016/j.foodres.2018.12.002
Jha, P. K., Chapleau, N., Meyers, P.-E., Pathier, D., y Le-Bail, A. (2024). Can cryogenic freezing preserve the quality of fruit matrices during long-term storage compared to the mechanical method? Applied Food Research, 4(1), 100374. https://doi.org/10.1016/j.afres.2023.100374
Loayza-Salazar, S., Siche, R., Vegas, C., Chávez-Llerena, R., Encina-Zelada, C., Calla-Florez, M., y Comettant-Rabanal, R. (2024). Novel Technologies in the Freezing Process and Their Impact on the Quality of Fruits and Vegetables. Food Engineering Reviews, 16, 371-395. https://doi.org/10.1007/s12393-024-09371-9
Muthukumarappan, K., Marella, C., y Sunkesula, V. (2019). Food Freezing Technology. Handbook of Farm, Dairy and Food Machinery Engineering, 389–415. https://doi.org/10.1016/b978-0-12-814803-7.00015-4
Narayana, G. P., Jha, P. K., Rawson, A., y Le-Bail, A. (2023). Changes in the quality of apple tissue subjected to different freezing rates during long-term frozen storage at different temperatures. International Journal of Refrigeration, 151, 397–405. https://doi.org/10.1016/j.ijrefrig.2023.03.022
Noriega-Juárez, A., Rubio-Carrillo, J., García-Magaña, M., González-Aguilar, G., Meza-Espinosa, L., Chacón-López, M., Aguilera-Aguirre, S., Osuna-García, J., y Montalvo-González, E. (2024). Comparison of individual quick freezing and traditional slow freezing on physicochemical, nutritional and antioxidant changes of four mango varieties harvested in two ripening stages. Food Chemistry Advances, 4, 100590. https://doi.org/10.1016/j.focha.2023.100590
Pérez-Bermúdez, I., Castillo-Suero, A., Cortés-Inostroza, A., Jeldrez, C., Dantas, A., Hernández, E., Orellana-Palma, P., y Petzold, G. (2023). Observation and Measurement of Ice Morphology in Foods: A Review. Foods, 12(21), 3987. https://doi.org/10.3390/foods12213987
Pesce, F., Parafati, L., Fallico, B., y Palmeri, R. (2025), Use of Liquid Nitrogen in Food Products: A Review. Food Frontiers., 6, 1617-1644. https://doi.org/10.1002%2Ffft2.70035 https://doi.org/10.1002/fft2.70035
Razali, N. A., Wan Ibrahim, W. M., Safari, S., Rosly, N. K., Hamzah, F. A., y Wan Husin, W. M. R. I. (2022). Cryogenic freezing preserves the quality of whole durian fruit for the export market. Food Research, 6(3), 360–364. https://doi.org/10.26656/fr.2017.6(3).428
Salami, T. M., Sun, D.-W., y Tian, Y. (2025). Advancing future food preservation with green cryoprotective agents (GCAs) to mitigate ice damage in freezing. Food Engineering Reviews. https://doi.org/10.1007/s12393-025-09411-y
Schudel, S., Prawiranto, K., y Defraeye, T. (2021). Comparison of freezing and convective dehydrofreezing of vegetables for reducing cell damage. Journal of Food Engineering, 293, 110376. https://doi.org/10.1016/j.jfoodeng.2020.110376
Tan, X. Y., Misran, A., Jeffery Daim, L. D., Ding, P., y Pak Dek, M. S. (2020). Effect of freezing on minimally processed durian for long term storage. Scientia Horticulturae, 264, 109170. https://doi.org/10.1016/j.scienta.2019.109170
Xu, R., Chen, Q., Zhang, Y., Li, J., Zhou, J., Wang, Y., Chang, H., Meng, F., y Wang, B. (2023). Research on flesh texture and quality traits upon kiwifruit (cv. Xuxiang) at fluctuating temperatures during cold storage. Preprints. https://doi.org/10.20944/preprints202308.1590.v1
Yu, H., Mei, J., y Xie, J. (2022). New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: A review. Ultrasonics Sonochemistry, 90, 106185. https://doi.org/10.1016/j.ultsonch.2022.106185
Zennoune, A., Benkhelifa, H., Flin, F., Ndoye, F., Perrin, J., Weitkamp, T., Scheel, M., Latil, P., y Geindreau, C. (2022). Investigating the influence of freezing rate and frozen storage conditions on a model sponge cake using synchrotron X-rays micro-computed tomography. Food Research International, 162 (Part B). 10.1016/j.foodres.2022.112116
Zhang, X., Nian, R., Li, Q., Wang, Y., You, K., Zhu, D., y Cao, X. (2024). Impact of ultrasonic pretreatment on the color and antioxidant capacity of vacuum freeze-dried strawberries. Drying Technology, 42(13), 2032–2043. https://doi.org/10.1080/07373937.2024.2405858
Zielińska, M., Zieliński, D., Markowski, M., & Mieszczakowska-Frąc, M. (2018). Effects of freezing and hot air drying on the physical, morphological and thermal properties of cranberries. Food and Bioproducts Processing, 110, 40–49. https://doi.org/10.1016/j.fbp.2018.04.006
Zhao, C., Niu, J., Wang, W., Wang, Y., Wang, Y., Cheng, L., Meng, Y., Guo, Y., y Song, S. (2021). Deterioration in the quality of ‘Xuxiang’ kiwifruit pulp caused by frozen storage: An integrated analysis based on phenotype, color, antioxidant activity, and flavor compounds. Foods, 10(12), 3168. https://doi.org/10.3390/foods10123168
Wu, J., Jia, X., y Fan, K. (2022). Recent advances in the improvement of freezing time and physicochemical quality of frozen fruits and vegetables by ultrasound application. International Journal of Food Science and Technology, 57(7), 3352–3360. http://dx.doi.org/10.1111/ijfs.15744