Evaluation of the effects of cryogenic freezing on fruits
Main Article Content
Abstract
Cryogenic freezing is considered one of the most efficient techniques for fruit preservation, as it extends shelf life while preserving sensory and nutritional characteristics. Its effectiveness lies in the formation of small, uniform ice crystals that maintain cell structure, reducing physical damage and limiting microbial and enzymatic activity. Success depends on factors such as freezing rate, fruit type, storage time, and thawing process. In mangoes, rapid freezing methods like Individual Quick Freezing (IQF) have shown to better preserve texture, color, and antioxidants compared to conventional techniques. In blueberries, liquid nitrogen application maintains high levels of vitamin C and firmness, although it can cause surface cracking if the process is not carefully controlled. In kiwis, the effects vary according to soluble solids content and fruit region, influencing cold tolerance and structural damage. In durian, cryogenics has proven more effective than traditional freezing, preserving both internal and external quality for a longer period. Emerging technologies such as ultrasound, high pressure, magnetic fields, and the use of cryoprotectants, especially polysaccharide nanoparticles, enhance this technique by reducing recrystallization and optimizing fruit stability during freezing and thawing, making cryogenics a strategic tool for the modern food industry.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alhamdan, A., Hassan, B., Alkahtani, H., Abdelkarim, D., y Younis, M. (2018). Freezing of fresh Barhi dates for quality preservation during frozen storage. Saudi Journal of Biological Sciences, 25(8), 1552–1561. http://dx.doi.org/10.1016/j.sjbs.2016.02.003
Aldoradin-Puza, E., Cuba-Mayo, F., Alemán-Polo, J., Perea-De la Matta, A., Sánchez-Espinoza, J., y Castillo-Alva, J. (2019). Efecto de la congelación con campos magnéticos oscilantes sobre las características físicas y sensoriales del mango (Mangifera indica L. cv. ‘Kent’). Revista Brasileña de Tecnología de Alimentos, 22, e2018169. https://doi.org/10.1590/1981-6723.16918
Cheng, L., Wu, W., An, K., Xu, Y., Yu, Y., Wen, J., Wu, J., Zou, Y., Liu, H., Zhu, J., y Xiao, G. (2020). Advantages of liquid nitrogen quick freezing combine gradient slow thawing for quality preserving of blueberry. Crystals, 10(5), 368. https://doi.org/10.3390/cryst10050368
Charoenrein, S., y Owcharoen, K. (2016). Effect of freezing rates and freeze-thaw cycles on the texture, microstructure and pectic substances of mango. International Food Research Journal, 23(2), 613–620. http://www.ifrj.upm.edu.my
Demirci, K., Bayraktar, B., Özdemir , E.,
Görgüç, A., y Yilmaz, F. (2025). The potential of nanoscale polysaccharides for cryoprotection in frozen foods. Trends in Food Science & Technology, in press. https://doi.org/10.1016/j.fbio.2025.106381
Domin, M., Dziki, D., Kłapsia, S., Blicharz-Kania, A., Biernacka, B., y Krzykowski, A. (2020). Influence of the Freeze-drying Conditions on the Physicochemical Properties and Grinding Characteristics of Kiwi. International Journal of Food Engineering, 16(1-2), 20180315. https://doi.org/10.1515/ijfe-2018-0315 http://dx.doi.org/10.1515/ijfe-2018-0315
Grover, Y., y Negi P. (2023). Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. Journal of Food Science, 88(1), 4799–4826. https://doi.org/10.1111/1750-3841.16810
Hendra Adi Prasetia, Slamet Budiawan, Ade Syahputra, Retno Umiarsih, Rifena Pangastuweni, Mutia Riefka Fauzidanty, Idham Sakti Harahap, Dondy Anggono Setyabudi, Affandi, Mazdani Ulfah Daulay and Wawan Sutian (2023). Effects of freezing time on degradation of durian (Durio zibethinus Murr.) fruit’s attributes during the frozen storage. Tropical Life Sciences Research 34(1): 19–39. https://doi.org/10.21315/tlsr2023.34.1.2
Huang, B., Li, Y., y Hu, Z. (2024). Effect of Glassy State and Liquid Nitrogen Quick Freezing on the Quality Characteristics of Blueberries. Food Science, 45(6), 225–232. https://www.spkx.net.cn/EN/10.7506/spkx1002-6630-20230629-236
Huang, W., Shen, S., Wang, Z., Yang, J., Lv, H., Tian, H., Burdon, J., y Zhong, C. (2024). Freezing points of fruit from different kiwifruit genotypes at harvest and during cold storage. Horticulturae, 10(6), 624. https://doi.org/10.3390/horticulturae10060624
Gales, O., Jones, J., y Swarts, N. (2022). An analysis on the impacts of cryogenic freezing on raspberry quality. Advances in Horticultural Science, 36(4), 293–301. https://doi.org/10.36253/ahsc-13824
Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International (Ottawa, Ont.), 121, 479–496. https://doi.org/10.1016/j.foodres.2018.12.002
Jha, P. K., Chapleau, N., Meyers, P.-E., Pathier, D., y Le-Bail, A. (2024). Can cryogenic freezing preserve the quality of fruit matrices during long-term storage compared to the mechanical method? Applied Food Research, 4(1), 100374. https://doi.org/10.1016/j.afres.2023.100374
Loayza-Salazar, S., Siche, R., Vegas, C., Chávez-Llerena, R., Encina-Zelada, C., Calla-Florez, M., y Comettant-Rabanal, R. (2024). Novel Technologies in the Freezing Process and Their Impact on the Quality of Fruits and Vegetables. Food Engineering Reviews, 16, 371-395. https://doi.org/10.1007/s12393-024-09371-9
Muthukumarappan, K., Marella, C., y Sunkesula, V. (2019). Food Freezing Technology. Handbook of Farm, Dairy and Food Machinery Engineering, 389–415. https://doi.org/10.1016/b978-0-12-814803-7.00015-4
Narayana, G. P., Jha, P. K., Rawson, A., y Le-Bail, A. (2023). Changes in the quality of apple tissue subjected to different freezing rates during long-term frozen storage at different temperatures. International Journal of Refrigeration, 151, 397–405. https://doi.org/10.1016/j.ijrefrig.2023.03.022
Noriega-Juárez, A., Rubio-Carrillo, J., García-Magaña, M., González-Aguilar, G., Meza-Espinosa, L., Chacón-López, M., Aguilera-Aguirre, S., Osuna-García, J., y Montalvo-González, E. (2024). Comparison of individual quick freezing and traditional slow freezing on physicochemical, nutritional and antioxidant changes of four mango varieties harvested in two ripening stages. Food Chemistry Advances, 4, 100590. https://doi.org/10.1016/j.focha.2023.100590
Pérez-Bermúdez, I., Castillo-Suero, A., Cortés-Inostroza, A., Jeldrez, C., Dantas, A., Hernández, E., Orellana-Palma, P., y Petzold, G. (2023). Observation and Measurement of Ice Morphology in Foods: A Review. Foods, 12(21), 3987. https://doi.org/10.3390/foods12213987
Pesce, F., Parafati, L., Fallico, B., y Palmeri, R. (2025), Use of Liquid Nitrogen in Food Products: A Review. Food Frontiers., 6, 1617-1644. https://doi.org/10.1002%2Ffft2.70035 https://doi.org/10.1002/fft2.70035
Razali, N. A., Wan Ibrahim, W. M., Safari, S., Rosly, N. K., Hamzah, F. A., y Wan Husin, W. M. R. I. (2022). Cryogenic freezing preserves the quality of whole durian fruit for the export market. Food Research, 6(3), 360–364. https://doi.org/10.26656/fr.2017.6(3).428
Salami, T. M., Sun, D.-W., y Tian, Y. (2025). Advancing future food preservation with green cryoprotective agents (GCAs) to mitigate ice damage in freezing. Food Engineering Reviews. https://doi.org/10.1007/s12393-025-09411-y
Schudel, S., Prawiranto, K., y Defraeye, T. (2021). Comparison of freezing and convective dehydrofreezing of vegetables for reducing cell damage. Journal of Food Engineering, 293, 110376. https://doi.org/10.1016/j.jfoodeng.2020.110376
Tan, X. Y., Misran, A., Jeffery Daim, L. D., Ding, P., y Pak Dek, M. S. (2020). Effect of freezing on minimally processed durian for long term storage. Scientia Horticulturae, 264, 109170. https://doi.org/10.1016/j.scienta.2019.109170
Xu, R., Chen, Q., Zhang, Y., Li, J., Zhou, J., Wang, Y., Chang, H., Meng, F., y Wang, B. (2023). Research on flesh texture and quality traits upon kiwifruit (cv. Xuxiang) at fluctuating temperatures during cold storage. Preprints. https://doi.org/10.20944/preprints202308.1590.v1
Yu, H., Mei, J., y Xie, J. (2022). New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: A review. Ultrasonics Sonochemistry, 90, 106185. https://doi.org/10.1016/j.ultsonch.2022.106185
Zennoune, A., Benkhelifa, H., Flin, F., Ndoye, F., Perrin, J., Weitkamp, T., Scheel, M., Latil, P., y Geindreau, C. (2022). Investigating the influence of freezing rate and frozen storage conditions on a model sponge cake using synchrotron X-rays micro-computed tomography. Food Research International, 162 (Part B). 10.1016/j.foodres.2022.112116
Zhang, X., Nian, R., Li, Q., Wang, Y., You, K., Zhu, D., y Cao, X. (2024). Impact of ultrasonic pretreatment on the color and antioxidant capacity of vacuum freeze-dried strawberries. Drying Technology, 42(13), 2032–2043. https://doi.org/10.1080/07373937.2024.2405858
Zielińska, M., Zieliński, D., Markowski, M., & Mieszczakowska-Frąc, M. (2018). Effects of freezing and hot air drying on the physical, morphological and thermal properties of cranberries. Food and Bioproducts Processing, 110, 40–49. https://doi.org/10.1016/j.fbp.2018.04.006
Zhao, C., Niu, J., Wang, W., Wang, Y., Wang, Y., Cheng, L., Meng, Y., Guo, Y., y Song, S. (2021). Deterioration in the quality of ‘Xuxiang’ kiwifruit pulp caused by frozen storage: An integrated analysis based on phenotype, color, antioxidant activity, and flavor compounds. Foods, 10(12), 3168. https://doi.org/10.3390/foods10123168
Wu, J., Jia, X., y Fan, K. (2022). Recent advances in the improvement of freezing time and physicochemical quality of frozen fruits and vegetables by ultrasound application. International Journal of Food Science and Technology, 57(7), 3352–3360. http://dx.doi.org/10.1111/ijfs.15744