Effect of hot air drying on remaining water content and total phenolic content of three morphotypes of mashua (Tropaelum tuberosum Ruíz y Pav.)

Main Article Content

Raquel N. Veliz-Sagarvinaga
Nelssi G. Chamorro-Diaz
Yaser M. Chavez-Solano
Heber P. Cornelio-Santiago
Karina S. Gutiérrez-Valverde

Abstract

Tropaeolum tuberosum Ruíz y Pav. (mashua) is a tuber cultivated in Andean zones as Huancavelica, with traditional use in food and functional potential due to its content of bioactive compounds. Due to its short fresh shelf life, its preservation is required. Hot air drying, an alternative to solar drying, can affect the stability of these compounds depending on the temperature applied. Therefore, the objective was to evaluate the effect of temperature (50, 60, 70 and 80 °C) of hot air drying on remaining water content (Y) and total phenolic content (TPC) in three morphotypes of mashua (Zapallo, Sangre de Cristo and Negra). The tubers were washed, disinfected with sodium hypochlorite (50 ppm), cut (2.5 mm), and dried (150 g) for 16 h. Free moisture was determined in the dried samples. They were then ground (particles < 850 μm) and extracts (80% methanol, 50 mg/mL) were prepared for TPC determination. Drying temperature significantly (p < 0.05) influenced the TPC as it increased from 50 to 80 °C, and did not influence the Y. TPC ranged from 1608 ± 80.22 to 2069 ± 82.01, 1732 ± 59.43 to 2069 ± 30.32 and 5286 ± 143.74 to 7929 ± 120.48 mg gallic acid equivalent/100 g dry mashua for Zapallo, Sangre de Cristo and Negra, respectively. These results indicate that hot air drying at 60 °C can be used to obtain dried mashua of the Sangre de Cristo and Negra varieties with higher TPC, while at 80 °C the TPC for the Zapallo variety is better preserved.

Downloads

Download data is not yet available.

Article Details

How to Cite
Raquel N. Veliz-Sagarvinaga, Nelssi G. Chamorro-Diaz, Yaser M. Chavez-Solano, Heber P. Cornelio-Santiago, & Karina S. Gutiérrez-Valverde. (2025). Effect of hot air drying on remaining water content and total phenolic content of three morphotypes of mashua (Tropaelum tuberosum Ruíz y Pav.). Revista De Investigaciones De La Universidad Le Cordon Bleu, 12(1), 115 - 129. https://doi.org/10.36955/RIULCB.2025v12n1.009
Section
Artículo Original

References

Acurio, L., Salazar, D., Castillo, B., Santiana, C., Martínez-Monzó, J., y Igual, M. (2023). Characterization of Second-Generation Snacks Manufactured from Andean Tubers and Tuberous Root Flours. Foods, 13(1), 51. https://doi.org/10.3390/FOODS13010051
Acurio, L., Salazar, D., Guanoquiza, I., García-Segovia, P., Martínez-Monzó, J., y Igual, M. (2025). Ecuadorian roots flours: Bioactive compounds and processing properties. Journal of Agriculture and Food Research, 19, 101740. https://doi.org/10.1016/J.JAFR.2025.101740
Aguilar‐Galvez, A., García‐Ríos, D., Lindo, J., Ramírez‐Guzmán, D., Chirinos, R., Pedreschi, R., y Campos, D. (2022). Impact of cold storage followed by drying of mashua tuber (Tropaeolum tuberosum) on the glucosinolate content and their transformation products. International Journal of Food Science & Technology, 57(12), 7797–7805. https://doi.org/10.1111/ijfs.16088
Bahnasawy, A. H., y Shenana, M. E. (2004). A mathematical model of direct sun and solar drying of some fermented dairy products (Kishk). Journal of Food Engineering, 61(3), 309–319. https://doi.org/10.1016/S0260-8774(03)00134-1
Behar, H., Reategui, O., Liviac, D., Arcos, J., y Best, I. (2021). Phenolic compounds and in vitro antioxidant activity of six accessions of mashua (Tropaeolum tuberosum R. & P.) from Puno Region, Peru. Revista Facultad Nacional de Agronomía Medellín, 74(3), 9707–9714. https://doi.org/10.15446/rfnam.v74n3.93020
Berk, Z. (2018). Dehydration. Food Process Engineering and Technology, 513–566. https://doi.org/10.1016/B978-0-12-812018-7.00022-1
Betalleluz-Pallardel, I., Chirinos, R., Rogez, H., Pedreschi, R., y Campos, D. (2012). Phenolic compounds from Andean mashua (Tropaeolum tuberosum) tubers display protection against soybean oil oxidation. Food Science and Technology International, 18(3), 271–280. https://doi.org/10.1177/1082013211427794
Campos, D., Chirinos, R., Gálvez Ranilla, L., y Pedreschi, R. (2018). Bioactive Potential of Andean Fruits, Seeds, and Tubers. Advances in Food and Nutrition Research, 84, 287–343. https://doi.org/10.1016/BS.AFNR.2017.12.005
Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W., y Cisneros‐Zevallos, L. (2006). Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 86(10), 1481–1488. https://doi.org/10.1002/jsfa.2529
Castañeta, G., Miranda-Flores, D., Bascopé, M., y Peñarrieta, J. M. (2024). Characterization of carotenoids, proximal analysis, phenolic compounds, anthocyanidins and antioxidant capacity of an underutilized tuber (Tropaeolum tuberosum) from Bolivia. Discover Food, 4(1), 1–12. https://doi.org/10.1007/S44187-024-00078-8/FIGURES/4
Castillo-Zapata, K. C., Reyes-Diaz, J. D., Cornelio-Santiago, H. P., Espinoza-Espinoza, L. A., Valdiviezo-Marcelo, J., y Ruiz-Flores, L. A. (2024). Efecto del secado con aire caliente en el contenido de fenólicos totales y capacidad antioxidante de la cáscara de pitahaya roja (Hylocereus guatemalensis). Revista de Investigaciones de La Universidad Le Cordon Bleu, 11(2), 97–106. https://doi.org/10.36955/RIULCB.2024v11n2.009
Chirinos, R., Campos, D., Arbizu, C., Rogez, H., Rees, J., Larondelle, Y., Noratto, G., y Cisneros‐Zevallos, L. (2007). Effect of genotype, maturity stage and post‐harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz & Pavón). Journal of the Science of Food and Agriculture, 87(3), 437–446. https://doi.org/10.1002/jsfa.2719
Chirinos, R., Campos, D., Betalleluz, I., Giusti, M. M., Schwartz, S. J., Tian, Q., Pedreschi, R., y Larondelle, Y. (2006). High-Performance Liquid Chromatography with Photodiode Array Detection (HPLC−DAD)/HPLC−Mass Spectrometry (MS) Profiling of Anthocyanins from Andean Mashua Tubers (Tropaeolum tuberosum Ruíz and Pavón) and Their Contribution to the Overall Antioxidant Activity. Journal of Agricultural and Food Chemistry, 54(19), 7089–7097. https://doi.org/10.1021/jf0614140
Chirinos, R., Campos, D., Costa, N., Arbizu, C., Pedreschi, R., y Larondelle, Y. (2008). Phenolic profiles of andean mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry, 106(3), 1285–1298. https://doi.org/10.1016/J.FOODCHEM.2007.07.024
Chirinos, R., Campos, D., Warnier, M., Pedreschi, R., Rees, J. F., y Larondelle, Y. (2008). Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry, 111(1), 98–105. https://doi.org/10.1016/J.FOODCHEM.2008.03.038
Chirinos, R., Pedreschi, R., Cedano, I., y Campos, D. (2015). Antioxidants from Mashua (Tropaeolum tuberosum) Control Lipid Oxidation in Sacha Inchi (Plukenetia volubilis L.) Oil and Raw Ground Pork Meat. Journal of Food Processing and Preservation, 39(6), 2612–2619. https://doi.org/10.1111/JFPP.12511;WGROUP:STRING:PUBLICATION
Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., y Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology, 55(2), 217–225. https://doi.org/10.1016/J.SEPPUR.2006.12.005
Choquechambi, L. A., Callisaya, I. R., Ramos, A., Bosque, H., Mújica, A., Jacobsen, S. E., Sørensen, M., y Leidi, E. O. (2019). Assessing the Nutritional Value of Root and Tuber Crops from Bolivia and Peru. Foods, 8(11), 526. https://doi.org/10.3390/FOODS8110526
Coloma, A., Flores-Mamani, E., Quille-Calizaya, G., Zaira-Churata, A., Apaza-Ticona, J., Calsina-Ponce, W. C., Huata-Panca, P., Inquilla-Mamani, J., y Huanca-Rojas, F. (2022). Characterization of Nutritional and Bioactive Compound in Three Genotypes of Mashua (Tropaeolum tuberosum Ruiz and Pavón) from Different Agroecological Areas in Puno. International Journal of Food Science, (1), 7550987. https://doi.org/10.1155/2022/7550987
García-Chacón, J. M., Marín-Loaiza, J. C., y Osorio, C. (2023). Camu Camu (Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties-A Review. ACS Omega, 8(6), 5169–5183. https://doi.org/10.1021/ACSOMEGA.2C07245/ASSET/IMAGES/LARGE/AO2C07245_0003.JPEG
Grau, A., Andrade, N. J. P., y Sørensen, M. (2025). Traditional uses, processes, and markets: the case of Mashua (Tropaeolum tuberosum Ruíz & Pav.). Traditional Products and Their Processes, 269–278. https://doi.org/10.1016/B978-0-323-90844-3.00009-3
Jacobo-Velázquez, D. A., Peña-Rojas, G., Paredes-Avila, L. E., Andía-Ayme, V., Torres-Contreras, A. M., y Herrera-Calderon, O. (2022). Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. Horticulturae, 8(6), 471. https://doi.org/10.3390/HORTICULTURAE8060471
Kaloudi, T., Tsimogiannis, D., y Oreopoulou, V. (2022). Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules, 27(14), 4375. https://doi.org/10.3390/MOLECULES27144375
Kerr, W. L. (2019). Food Drying and Evaporation Processing Operations. Editor(s): Myer Kutz (Third Edition) Handbook of Farm, Dairy and Food Machinery Engineering, 353–387. https://doi.org/10.1016/B978-0-12-814803-7.00014-2
Leidi, E. O., Altamirano, A. M., Mercado, G., Rodriguez, J. P., Ramos, A., Alandia, G., Sørensen, M., y Jacobsen, S. E. (2018). Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 51, 86–93. https://doi.org/10.1016/J.JFF.2018.10.007
Li, H., Nunekpeku, X., Adade, S. Y.-S. S., Sheng, W., Kwadzokpui, B. A., Ahlivia, E. B., y Chen, Q. (2025). Phenolic compounds detection and quantification in whole grains: A comprehensive review of recent advancements in analytical methods. TrAC Trends in Analytical Chemistry, 187, 118215. https://doi.org/10.1016/J.TRAC.2025.118215
Luziatelli, G., Alandia, G., Rodríguez, J. P., Manrique, I., Jacobsen, S. E., y Sørensen, M. (2023). Ethnobotany of Andean minor tuber crops: tradition and innovation—Oca (Oxalis tuberosa Molina—Oxalidaceae), Mashua (Tropaeolum tuberosum Ruíz & Pav.—Tropaeoleaceae) and Ulluco (Ullucus tuberosus Caldas—Basellaceae). Varieties and Landraces: Cultural Practices and Traditional Uses: Volume 2: Underground Starchy Crops of South American Origin: Production, Processing, Utilization and Economic Perspectives, 2, 79–100. https://doi.org/10.1016/B978-0-323-90057-7.00009-7
Onwude, D. I., Iranshahi, K., Rubinetti, D., Schudel, S., Schemminger, J., Martynenko, A., y Defraeye, T. (2022). How much do process parameters affect the residual quality attributes of dried fruits and vegetables for convective drying? Food and Bioproducts Processing, 131, 176–190. https://doi.org/10.1016/J.FBP.2021.11.005
Pacheco, M. T., Escribano-Bailón, M. T., Moreno, F. J., Villamiel, M., y Dueñas, M. (2019). Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. Journal of Food Composition and Analysis, 84, 103258. https://doi.org/10.1016/J.JFCA.2019.103258
Pacheco, M. T., Hernández-Hernández, O., Moreno, F. J., y Villamiel, M. (2020). Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 35, 100601. https://doi.org/10.1016/J.FBIO.2020.100601
Paucar-Menacho, L. M., Peñas, E., Hernandez-Ledesma, B., Frias, J., & Martínez-Villaluenga, C. (2020). A comparative study on the phenolic bioaccessibility, antioxidant and inhibitory effects on carbohydrate-digesting enzymes of maca and mashua powders. LWT, 131, 109798. https://doi.org/10.1016/J.LWT.2020.109798
Quispe-Fuentes, I., Vega-Gálvez, A., & Aranda, M. (2018). Evaluation of phenolic profiles and antioxidant capacity of maqui (Aristotelia chilensis) berries and their relationships to drying methods. Journal of the Science of Food and Agriculture, 98(11), 4168–4176. https://doi.org/10.1002/JSFA.8938;WGROUP:STRING:PUBLICATION
Salazar, D., Arancibia, M., Ocaña, I., Rodríguez-Maecker, R., Bedón, M., López-Caballero, M. E., y Montero, M. P. (2021). Characterization and Technological Potential of Underutilized Ancestral Andean Crop Flours from Ecuador, Agronomy 11(9), 1693. https://doi.org/10.3390/AGRONOMY11091693
Siqueira, M. V. B. M., do Nascimento, W. F., Pereira, D. A., Cruz, J. G., Vendrame, L. P. de C., y Veasey, E. A. (2023). Origin, domestication, and evolution of underground starchy crops of South America. Starchy Crops Morphology, Extraction, Properties and Applications: Vol 1: Underground Starchy Crops of South American Origin: Production, Processing, Utilization and Economic Perspectives, 1, 17–42. https://doi.org/10.1016/B978-0-323-90058-4.00011-6
Zambrano, J. L. A., de Oliveira Paulino, F., y da Cruz, D. D. (2025). Roots and tubers in Colombia’s culinary and food traditions. Traditional Starch Food Products: Application and Processing, 4(4), 113–127. https://doi.org/10.1016/B978-0-323-90844-3.00012-3