Aging, free radicals and antioxidants

Main Article Content

Eduardo Menéndez-Álvarez
Gicela Rodríguez-Espinio
Edmme Baguer

Abstract

The article presents aging as a multifactorial, progressive biological process shaped by intersecting theories, with special focus on oxidative stress and free radical involvement. The Free Radical Theory of Aging posits that reactive oxygen species (ROS), produced both endogenously and via environmental exposures, induce cumulative molecular damage to lipids, proteins, and DNA impacting cellular and tissue integrity. This oxidative stress contributes to age-related degenerative diseases such as cancer and Alzheimer’s. Although antioxidants (both endogenous enzymes and exogenous dietary compounds) offer protective mechanisms against ROS, empirical evidence on their efficacy in extending lifespan remains inconclusive, largely due to bioavailability challenges and systemic complexity. The article also addresses mitochondrial dysfunction and genomic instability especially mitochondrial DNA mutations as key contributors to aging, proposing a dynamic interaction between genetic regulation, oxidative insults, and physiological decline. Experimental findings from animal models suggest associations between oxidative damage and aging phenotypes, though not always consistent across species. The authors advocate for a comprehensive approach that integrates molecular, genetic, and environmental perspectives, urging evidence based public health strategies to manage the rising aging population. In sum, aging is characterized as a heterogeneous, irreversible process not reducible to a single cause but rather to a complex network of biological mechanisms.

Downloads

Download data is not yet available.

Article Details

How to Cite
Eduardo Menéndez-Álvarez, Gicela Rodríguez-Espinio, & Edmme Baguer. (2025). Aging, free radicals and antioxidants. Revista De Investigaciones De La Universidad Le Cordon Bleu, 12(1), 55–67. https://doi.org/10.36955/RIULCB.2025v12n1.005
Section
Artículo Original

References

Aluyor, E. O., y Oboh, I. O. (2014). Encyclopedia of Food Microbiology. (Second Edition) Traditional Preservatives – Vegetable Oils Pages 137-140

Alvarado, A. M., y Salazar, Á. M. (2014). Análisis del concepto de envejecimiento. Gerokomos, 25(2), 57-62. https://dx.doi.org/10.4321/S1134-928X2014000200002

Avello, M., y Suwalsky, M. (2006). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea, (494), 161-172. https://dx.doi.org/10.4067/S0718-04622006000200010

Avendaño-Monsalve, M. C., Ponce-Rojas, J. C., y Funes, S. (2021). Viaje al centro de la mitocondria: importación de proteínas, sus alteraciones y enfermedades relacionadas. TIP. Revista especializada en ciencias químico-biológicas, 24, e370. https://doi.org/10.22201/fesz.23958723e.2021.370

Baguer, E. A., y Menéndez-Álvarez, E. (2024). El Mango (Mangifera indica L.) como modelo de estudios de los flavonoides. Revista De Investigaciones De La Universidad Le Cordon Bleu, 11(2), 76-86. https://doi.org/10.36955/RIULCB.2024v11n2.007

Bast, A., Haenen, G. R., & Doelman, C. J. (1991). Oxidants and antioxidants: State of the art. American Journal of Medicine (91) :2S–13S. https://doi.org/10.1016/0002-9343(91)90278-6

Biesalski, H. K., Grune, T., Tinz, J., Zöllner, I., & Blumberg, J. B. (2010). Reexamination of a Meta-Analysis of the Effect of Antioxidant Supplementation on Mortality and Health in Randomized Trials. Nutrients, 2(9), 929-949. https://doi.org/10.3390/nu2090929

Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2007). Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. Journal of American Medical Association, 297(8), 842–857. https://doi.org/10.1001/jama.297.8.842

Bloom, E., y Zucker, L. (2023). El envejecimiento de la población es la principal tendencia demográfica a nivel mundial; la pandemia puede enseñarnos a prepararnos para ella. Finanza y Desarrollo. https://www.imf.org/es/Publications/fandd/issues/Series/Analytical-Series/aging-is-the-real-population-bomb-bloom-zucker

Bonnet-Zamponi, L. (2016). Drug-related readmissions to medical units of older adults discharged from acute geriatric units: results of the optimization of medication in AGEd multicenter randomi. Journal of American Geriatrical Society, 61(1), 113-21. https://doi.org/10.1111/jgs.12037

Collin, F. (2019). Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. International Journal of Molecular Sciences, 20(10), 2407. https://doi.org/10.3390/ijms20102407

Cui, H., Kong, Y., Zhang, H,, (2012). Oxidative Stress, Mitochondrial Dysfunction, and Aging, Journal of Signal Transduction, 2012(1), 646354. https://doi.org/10.1155/2012/646354

Cutler, R. (1991). Recent progress in testing the longevity determinate and dedifferentiation hypothesis of aging. Archives of gerontology and geriatrics, 12(2).75-98 https://doi.org/10.1016/0167-4943(91)90021-H

Chrząszcz, M., Krzemińska, B., Celiński, R., & Szewczyk, K. (2021). Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus. Plants, 10(5), 952. https://doi.org/10.3390/plants10050952

Demain, A. L. (2014). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology, 41(1) 185–201. https://doi.org/10.1007/s10295-013-1325-z

Esmeraldas, E., Falcones, M., Vásquez, M., y Solórzano, J. (2019). El envejecimiento del adulto mayor y sus principales características. Revista Científica de la Investigación y el Conocimiento, 3(1) 58-74 https://dialnet.unirioja.es/servlet/articulo?codigo=6788154

Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247. https://doi.org/10.1038/35041687

Gladyshev, P. (2015). Thermodynamics of aging and heredity. Natural Science, 7(5) https://www.scirp.org/reference/referencespapers?referenceid=1482869

Goldstein, J., y Cassidy, T. (2010). How slowing senescence changes life expectancy. MPIDR Working paper WP 2010-006. Max Planck Institute for Demographic Research. https://citeseerx.ist.psu.edu/

González, R. (1995). Rehabilitación médica de ancianos: fisiología del envejecimiento. Masson, 1-5 http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1134-928X2007000200005&lng=es&tlng=es

Goodsell, D. S. (2004). Lecciones de la Naturaleza. John Wiley & Sons, Inc.; Hoboken, Bionanomedicina en acción.

Gutteridge, J. y Halliwell, B. (1999). Reactive oxygen species in biological systems, pp. 189-218, D.L. Gilbert and C.A. Colton, eds.

Halliwell, B. (1990). How to Characterize a Biological Antioxidant. Free Radical Research Communications, 9(1), 1–32. https://doi.org/10.3109/10715769009148569

Hayflik, L. (1983). Theories of againg. Fundamentals of Geriatric Medicine: Raven:43-50.

Hernández, D., y Ligibel, J. A., Schmitz, K. H., & Berger, N. A. (2020). Sarcopenia in aging, obesity, and cancer. Translational cancer research, 9(9), 5760–5771. https://doi.org/10.21037/tcr-2019-eaoc-05

Hong, Y., Boiti, A., Vallone, D., y Foulkes, N. S. (2024). Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants, 13(3), 312. https://doi.org/10.3390/antiox13030312

Hoyl, T. (2016). Teorías actuales de envejecimiento. Revista De Ciencias Médicas, 32(2), 33–38. https://doi.org/10.11565/arsmed.v32i2.258

Korovesis, D., Rubio-Tomás, T., & Tavernarakis, N. (2023). Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants, 12(1), 131. https://doi.org/10.3390/antiox12010131

Labunskyy, V. M., & Gladyshev, V. N. (2013). Role of reactive oxygen species-mediated signaling in aging. Antioxidants & redox signaling, 19(12), 1362–1372. https://doi.org/10.1089/ars.2012.4891

Ligibel, J. A., Schmitz, K. H., & Berger, N. A. (2020). Sarcopenia in aging, obesity, and cancer. Translational cancer research, 9(9), 5760–5771. https://doi.org/10.21037/tcr-2019-eaoc-05

Llancari, A., y Matos, A. (2011). Valoración de los nutrientes y antioxidantes en la salud humana e industria alimentaria. I Congreso Nacional de Investigación. Perú, Lima, 2-4 noviembre, 2011).

Maldonado, S. O., Jiménez, V. E., Guapillo, V. M., Ceballos, R.G., y Méndez, B. E. (2010). Radicales libres y su papel en las enfermedades crónico-degenerativas. Revista Médica de la Universidad Veracruzana, 10(2) https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=29254

McCord, J. (2007). Evolución y radicales libres. Revista Médica del Instituto Mexicano del Seguro Social; 45(5). 477-484. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=14192

Miquel, J. (2006). Integración de teorías del envejecimiento. Revista Española de Geriatría Gerontología, 41(1), 55-63. https://doi.org/10.1016/S0211-139X(06)72923-7

Miralles, M., Fusco, M., y Florentin, R. (2022). La vejez no es una enfermedad: críticas a la recategorización de la OMS postpandemia COVID-19, XXXVI Jornada de Investigación y XXVIII Encuentro regional. Secretaría de Investigaciones | FADU | UBA https://repositorio.uca.edu.ar/bitstream/123456789/19026/1/vejez-no-es.pdf

Mironczuk-Chodakowska, I., Witkowska, A., & Zujko M (2018). Endogenous non-enzymatic antioxidants in the human body Advanves in Medical Science; 63(1) :68–78. https://doi.org/10.1016/j.advms.2017.05.005

Mittal, C. K., & Murad, F. (1977). Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3’,5’-monophosphate formation. Proceedings of the National Academy of Sciences of the United States of America; 74: 4360-64. https://doi.org/10.1073/pnas.74.10.4360

Okamoto, K., Toyokuni, S., Kim, W. J., Ogawa, O., Kakehi, Y., Arao, S., Hiai, H., & Yoshida, O. (1996). Overexpression of human mutT homologue gene messenger RNA in renal-cell carcinoma: evidence of persistent oxidative stress in cancer. International Journal of Cancer, 65(4), 437–441. https://doi.org/10.1002/(SICI)1097-0215(19960208)65:4<437::AID-IJC7>3.0.CO;2-Y

Pauling, L. (1971). Vitamin C and Common Cold. Journal of American Medical Association, 216(2), 332. https://doi.org/10.1001/jama.1971.03180280086025

Pérez, V. I., Bokov, A., Van Remmen, H., Mele, J., Ran, Q., Ikeno, Y., & Richardson, A. (2009). Is the oxidative stress theory of aging dead?. Biochimica et biophysica acta, 1790(10), 1005–1014. https://doi.org/10.1016/j.bbagen.2009.06.003

Pinto, M., & Moraes, C. T. (2015). Mechanisms linking mtDNA damage and aging. Free Radical Biology and Medicine, 85 250-258. https://doi.org/10.1016/j.freeradbiomed.2015.05.005

Piña, M., Olivo, V., Martínez, C., Poblete, M., y Guerra, V. (2022). Envejecimiento, calidad de vida y salud. Desafíos para los roles sociales de las personas mayores. Rumbos TS, 17(28), 7-27. https://dx.doi.org/10.51188/rrts.num28.642

Quintanar, M., y Calderón, J. (2009). La capacidad antioxidante total. Bases y Aplicaciones. Revista de Educación de Bioquímica, 28(3):89-101. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=37157

Quintero, F., Garraza, M., Navazo, B., y Cesani, M. (2024). Teorías del envejecimiento biológico: una revisión. Revista Española de Geriatría y Gerontología, 59 (6) 101530 https://doi.org/10.1016/j.regg.2024.101530

Rani, A., Saini, K. C., Bast, F., Mehariya, S., Bhatia, S. K., Lavecchia, R., & Zuorro A. (2021). Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules, 26(4), 1142. https://doi.org/10.3390/molecules26041142

Ribera-Casado, J. M., y García, J. (2021). La vejez no es una enfermedad. Revista Española de Geriatría y Gerontología, 56(5), 257-258, https://doi.org/10.1016/j.regg.2021.07.002 .

Rodríguez, V., Rodríguez L., Sancho, M., Díaz, R., (2012). Envejecimiento. La investigación en España y Europa. Revista Española de Geriatría y Gerontología 47(4), 174-179. https://dx.doi.org/10.1016/j.regg.2012.02.005

Singh, B. P., Rateb, M. E., Rodriguez-Couto, S., Polizeli, M. L., y Li, W.J. (2019). Editorial: Microbial Secondary Metabolites: Recent Developments and Technological Challenges. Frontiers in Microbiology;10, 914. https://doi.org/10.3389/fmicb.2019.00914

Slagboom, P., & Vijg, J. (1989). Genetic instability and aging: theories, facts, and future perspectives. Genome, 31(1), 373-85. https://doi.org/10.1139/g89-057

Venereo, J. R. (2002). Daño oxidativo, radicales libres y antioxidantes. Revista Cubana de Medicina Militar, 31(2), 26-133. https://www.imbiomed.com.mx/articulo.php?id=5753

Warjeet, S. L. (2012). Natural Antioxidants (NAO) of Plants Acting as Scavengers of Free Radicals. Editor: Atta-ur-Rahman, Studies in Natural Products Chemistry, 37. 259-275 https://doi.org/10.1016/B978-0-444-59514-0.00009-2

Wickens, A. P. (2001). Ageing and the free radical theory. Respiration physiology, 128(3), 379–391. https://doi.org/10.1016/s0034-5687(01)00313-9

Yang, J., Luo, J., Tian, X., Zhao, Y., Li, Y., & Wu, X. (2024). Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants, 13(4), 394. https://doi.org/10.3390/antiox13040394

Zorrilla, E. (2002). El envejecimiento y el estrés oxidativo. Revista Cubana de Investigaciones Biomédicas, 21(3), 178-185. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002002000300006